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ABSTRACT

Expected utility theory and conjoint measurement theory form
two major classes of models and assessment procedures to construct
multi-attribute utility functions. In conjoint measurement theory
a value function v is constructed which preserves preferences
among riskless multi-attributed outcomes. The risky utility func-
tion u, constructed in the framework of expected utility theory,
also preserves such riskless preferences. In addition, u is an ap-
propriate guide for decisions under uncertainty since its expecta-
tion preserves risky preferences among gambles. Since both u and
v are order preserving functions, they must be related by a strictly
increasing transformation. However, u and v need not coincide or
be related through any special functional forms, unless some simple
-decomposition forms are assumed. More restricted functional rela-
tionships obtain, if u and v are assumed to be either additive or
multiplicative. In particular, u can be shown to be linearily,
logarithmically, or exponentially related to v, depending on which
function is additive and which is multiplicative. The paper proves
such functional relationships based on the theory of functional e-
quations, and techniques are described to assess the parameters of

these functions. The results are discussed from a behavioral stand-

point of interpretating the form and shape of multi-attribute utility

<
(]

functions and from a practical standpoint of simplifying multi-attri-

bute utility assessment.
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INTRODUCTION

M BT

Multiattribute preferences can be modeled in two fundamentally
different ways, depending on whether the decision problem involves
uncertainties or not. The first modeling approach is based on con-
joint measurement theory (see Krantz, Luce, Suppes, and Tversky,
1971) which applies to the problem of modeling riskless preferences !
for multiattributed outcomes. Conjoint measurement theory specifies

the conditions under which a riskless value function v can be con-

structed which preserves the preference order among multiattributed
outcomes and which can be expressed as a simple aggregate of single
attribute value functions V. The best known conjoint measurement

model forms are the additive and the multiplicative models:

n
vix) = T v.(x.) 09
\ =1 7 |
| :
{ and :
| .
r -,
| v(x) = i]-ll vs (%), (2)

| where x ¢ X is a multiattribute outcome, Xs is the level of x in the
i-th attribute Xi’ vy is the i-th single attribute value fimction,

y and v is the overall value function. Other simple polynomial forms :
of v have been developed in Krantz and Tversky (1970) and Krantz et al
(1971). Although v is an appropriate guide for preferences among sure

things, nothing in conjoint measurement theory guarantees that the ex-

" Ee o DR PR I 3
.

pectation of v is appropriate for selecting among gambles with multi-

attributed outcomes.
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The second moceling approach, expected utility theory, expli-
citly addresses the problem of decision making under risk. Based on
v. Neumann and Morgenstern's (1947) work which was later extended

by Savage (1954) and others, this theory provides the rationale for

constructing a utility function u which preserves the preferences

for riskless outcomes and at the same time its expectation preserves
the preferences among gambles for such outcomes. Applied to the multi-
attribute situation, several decomposition forms of u have been deve-
loped (see Keeney and Raiffa, 1976). The additive and the multipli-

cative forms are the best known:

n
u(x) = izl u, (x,), (3)
n
1+ku = 1f1+ku(x)]. 1))
i=l 1t

It is relatively trivial to establish the fact that u and v are
related by a strictly increasing transformation (see Raiffa, 1969;
Krantz et al, 1971; Keeney and Raiffa, 1976). But neither conjoint

measurement theory, nor expected utility theory by themselves provide

a rationale for any specific functional relationships between u and
v. In principle, the shape and aggregation rule of u and v can be
§ quite different. For example, v may be additive, while u is multi-
plicative or non-decomposable at all. All vi's may be linear, while
all ui’s may be non-linear, etc.

Establishing closed form functional relationships between u and
v is, however, possible when special decomposition forms such as (1) -

(4) are assumed. Scattered throughout the multiattribute literature

1
g
3
3
3
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2 g
are results which relate utility and value functions by some specific
class of transformation, e.g., exponential or logarithmic functions
(see Pollak, 1967; Krantz et al, 1971; Keeney and Raiffa, 1976; Dyer
and Sarin, 1977). Keenev and Raiffa, for example, give a proof out-
line to show that an additive value function v and a multiplicative

utility function u must be related exponentially:
u(x) = b exp{a v(x)}. (5

Another way to relate u and v is by the uniqueness theorems of their )
respective measurement theoretic representations. For example, an
additive conjoint measurement fumction v is unique up to a positive
linear transformation. Consequently, any other additive and order

preserving function v' must be related to v by

v (x) = a-v(x) + b. (6)
for some a > 0,b. In particu]far, an additive utility function u
should be related to an additive value function by a positive linear
transformation.

Functional forms such as (5) and (6) have been proven by a

variety of mathematical methods (differentiation methods in Pollak,
constructive algebraic proofs in Krantz et al, risk attitude argu-
ments in Keeney and Raiffa, and uniqueness theorems in Dver and Sarin).
No common framework or integrated presentation of these functional rel-

ations has been developed vet. This paper attempts to provide such an

integrative framework through the theory of functional equations. X

IR 1P LI
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The interest in parametric functional relationships such as
(5) and (6) is not merely theoretical. For the practitioner who has
to assess multiattribute utility functions in an applied context
such functional forms provide tools for simplifying and cross-checking
utility and value functions. Simplifications in the construction of
u are possible, by first constructing v and then exploring the func-
tional form relating u and v through its parametric properties. Such
a two step construction process has several advantages. First, v can
usually be approximated by simple techniques such as Edwards' SMART
procedure (1977), which involves similar judgmental processes as the
theoretically feasible construction process of dual standard
sequences (see Krantz et al, 1971). Second, the two step
procedure avoids lengthy and tedious lottery assessments in the con-
struction of u by assessing the parameters of the function u = h(v)
through a few simple questions involving risky outcomes.

Constructing the utility function u in the two step process has
also theoretical advantages. The value function v and its single attri-
bute functions v, express puréiy riskless preference characteristics,
such as marginally decreasing value, complementarity or substitution
phenomena between attributes. Such considerations are usually compoun-
ded in u and its single attribute functions uy with the risk attitudes
of the decision maker. For example, it is quite conceivable that a
single attribute utility function u, appears risk neutral (linear) be-
cause marginal decreasing value is compensated by risk proneness. The

two step construction process uncovers such anomalies by identifyving

riskless value aspects in the value function, and by incorporating
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"pure' risk considerations in the transformation u = h(v).

The next section will show that u and v must be related by
a strictly increasing transformation h, which under further tech-
nical assumptions must be continuous. Then four possible functional

equations will be investigated and solved.

n n
u =  u =h([z v.]=h), (7)
i=1 2 i=s1 1
n
l+ku = H (1+ku y=h [ ] =h(v) (8)
i=1 i=1
n
u = ¢ u =h( n V. ] h(v) (9)
i=1 1 i=1
1+ku = H (1+ku ) =h [ H V. ] h(v) (10)
i=1 1=1

The solutions consist of a reduction to one of the fundamental Cauchy
type functional equations (see Aczél, 1966). For certain standardiza-
tions of u and v these solutidﬁ§ turn out to be very simple, namely
u=v for (7), +ku = (1+k)" for (8), u=In v for (9) and

1+ku-= (sgnk)(sgnv)lvlln[1+(sgnk)'k] for (10). Subsequent to proving
these solutions, some behavioral and practical implications will be

discussed.

*%*

Readers who are willing to accept the above solutions and do not
want to bother with the rather technical proofs, are recommended to
skip the following two sections.
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Definitions and Preliminary Results

The value and utility functions v and u will be defined on the
product set X = Xl X )(2 X ... X Xi X ... X Xn. x and y are typical
elements of X. X5 and Y3 characterize their respective levels in
attribute Xi. P is the set of simple probability distributions over
X with typical elements p, q € P. A transitive and connected order

relation 2is defined on P with p?q being interpreted as 'p is pre-

ferred to or indifferent to q.' By considering degenerate probability

distributions > can be reduced to X. Thus p2>q where p(x) = q(y) =
for some x, yeX is written as x2y, and interpreted as 'x is pre-
-ferred to or indifferent to y." u and v are defined as follows (for

more details, see Fishburn, 1970):

Definition 1 A function u: X+Re is a (v. Neumann and Morgenstern)
utility function if for all p,qeP
Pzq
if and only if (11)
E(u|p) > E(u]q)
where E(u |.) denotes the/expectaticn of u with respect to some
probability distribution. If u can be expressed as in (3) it is
called additive. If u can be expressed as in (4) it is called
multiplicative.
Note: From Definition 1 and the reduction of > to X it follows that u
is order preserving, i.e., for all x,yeX
X2y
if and only if (12)
u(x) > u(y)

P A P

e )

-
v
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X
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Definition 2 A fumction v: X - Re is a (conjoint measurement) value

functién, if for all x,yeX
X2y
if and only if (13)
v(x) > v(y).

If v can be expressed as in (1) it is callad additive.
If v can be expressed as in (2), it is called multipolicative.
The axioms and representation theorems leading to definitions 1 and 2
are of no special interest here. Axiomatic foundations of utility
functions can be found in v. Neumann and Morgenstern (1947), Savage
(1954), and Fishburn (1970). Axioms for the additive and multipl cative
decomposition forms of u are presented in Keeney and Raiffa (1976) and
Fishburn (1970). Axiomatic foundations of conjoint measurement value
functions are given in Krantz et al (1971), including the additive and
the miltiplicative forms as well as other simple polynomials.

Besides the assumptions implicit in definitions 1 and 2, the solu-
tions to the functional equations (7)-(10) require that h be continuous.
Since continuity is a rather é;stract concept, the more natural assump-
tion will be made in the following that u and v are defined onto some
convex subset of Re, labelled I, and Iv respectively. From the defini-
tions of u and v and from this onto property it follows that h must be
strictly increasing and continuous. Lemma 1formalizes this implication.
Lemma 1 Assume that u: X o?fqu is a atility functigzé where Iu is a

convex subset of Re. Assume further that v: X - I, is a value

. function where I tis a convex subset of Re. Then there exists a
onto

function h: Iv - Iu which is strictly increasing and continuous.

Proof. The proof is trivial except for continuity. Define h

# W R TUE PEE AN TGN VRO T R WS SN R YW VT P W UW W L LA Fe L e s e

iGN SelinaCion
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by u(x) = h [v(x)] for all xe X. From the equality part of (12) and
(13) it follows that h is well defined. From the inequality part of
(12) and (13) it follows that h is strictly increasing. h is onto
since both u and v are onto.

To prove continuity, consider the contrary. Then there exists
at least one point re Iv at which h is discontinuous. By the onto
property of v and the definition of h, h(r) is defined. Consider first

the case where r is not a boundary point of I v’ and define right and

left hand limits as

lim h(t) =1L,

t+T1 (14)

lim h(t) =R.
t-»r"

By the assumption that r is not a boundary point, we can define a
sufficiently small e such that h(r+e) and h(r-e) exist. By the fact
that h is strictly increasing

-

h(r-e) <L <h(r) <R <h(r+e). (15)

This establishes boundaries for L and R and shows that both limits
must exist. By the assumed discontinuity at r, however, at least one
of the weak inequalities in (15) must be strict. By the convexity of
Iu we therefore can find an a such that m = aR + (1-a)L # h(r); me Iu'
However, by (15) there exists no se¢ Iv such that h(s) = m, thus con-

tradicting the onto property of h. Consequently, h must be continuous,

at r.




A similar argument can be made for the cases where r is either

a lower or an upper boundary point of Iv by only considering right
hand or left hand limits. In each of these cases the assumption that
h is discontinuous leads to a violation of the onto property of h.
Thus h must be continuous everywhere in I,

In solving the functional equations (7)-(10) it is often con-
venient to transform u and v. The following simple lemmas state
which transformations are admissable in the sense that they do not
'"destroy'' any property of a value on utility functions. These lemmas
are actually the necessary parts of the uniqueness theorems in ex-
pected utility theory and conjoint measurement theory. Since the
proofs are very simple, only proof notes are given for each lemma.
Letmma 2 If v is an additive value function with additive terms Vi

then v' = av + b, a>0, is also an additive value fimction with

: n

additive terms vi' =av, + bi’ iilbi = b.

Proof note. Since a is positive, v' is order preserving. Also, V'
can be written as an additive function by using vi'. Therefore v' is

an additive value function.

Lemma 3 If v is a multiplicative value function with multiplicative

terms v, then v' =(sgn v)ob-lvla, a,b>0, is also a multiplicative

value function with multiplicative terms vi' =(sgn vi)-bilvila,
n
where 1 bi = b.
i=1
Proof note. Since a and b are positive,v' is order preserving.

Also, v' can be written as a multiplicative function using terms vi'.

The sign conditions make sure that v and v' have identical signs every-

where.

¢
g
;
g

.
A B
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Lemma 4 If u is an additive utility function with additive terms U,
then u' = au + b is also an additive utility function with addi-
n
tive terms u.' = au. + b., where I b, = b.
Proof note. Since a is positive, u' is order preserving over X. Since
E(u'| .) = a E(u| .) + b, the expectation of u' is also order preserving
over P. Finally u' can be expressed as an additive function using the
1]
u's.
Lemma 5 If k>0 and 1+ku is a multiplicative utility function with
multiplicative terms 1+kui, then u' = a (1+ku), a>0 is also a
multiplicative utility function with multiplicative terms

n
u.' = a.(1+ku.), na, = a. If k<0 and -(1+ku) is a multi-
i i 17 iap i
plicative utility function with multiplicative terms (1+kui),
then u' = -a(1+ku), a>0, is also a multiplicative utility function
n .
with multiplicative terms ai(1+kui), 1a, = -a.
' i=1
Proof note. The two cases k>0 and k<0 must be considered separately

to choose appropriate signs of the constants. (The case k = 0 is
equivalent to u being additive; thus Lemma 3 applies.) If k>0, and u

is the original utility functign, then 1+ku and u' are also utility
functions since a is positive and since the expectation operator is

linear. Also, u' can be expressed multiplicatively by using the ui's.

The sign of the ai's is arbitrary as long as their product is positive,
thus maintaining the order preserving property of u'. If k<@, and u

is the original utility function, l+ku produces an inverse ordering.

Thus - (1+ku) is again a utility function of the form -(1+ku) = f; (1+kui].

i=1
Since a is positive u' also is a utility function, which can be ex-

pressed multiplicatively by using ui'. The scaling of the ai‘s




L AL Y I LI LY T UL LT L P A SR ) P T L R S e —-—

11
guarantees that the product of the single attribute ui's is again
negative.

A point worth noting here is that the multiplicative value func-
tions could be transformed exponentially while still maintaining order
preserving properties and multiplicativeness. Such transformatians
are not admissible for utility functions since they would destroy their

expectation property.

The Basic Functional Equations and Their Solutions
With these results as a background, functional equations (7)-(10)
will now be solved by a reduction to fundamental Cauchy type equations
with some simple solution. In the simplest case, both u and v are
additive:
Theorem 1 Assume that u and v are additive as in (1) and (3). Then

there exist real numbers a>0, b such that

u=av+b (14)

Proof. The uniqueness of u and v can be used to prove the theorem (see
Dyer and Sarin, 1977). However, uniqueness is itself a rather difficult
property to establish, and its proof is usually hidden in the construc-

tive algebraic proofs of the representation theorems leading up to the

definition of utility and value functions. This proof therefore uses

&
the more fundamental route of reducing (7) to Cauchy's equation h(x+y) = _?
>
h(x) + h(y). 3
- »
Consider some arbitrary x° = (xlo, x.,o,. ces xio,. .. xno) with ;
o, _ ., © 0y - 0 Oy o ., O oy o .0 .
Vi(xi ) Vi, vix®) = v, ui(xi ) u, and u(x”) = u'. Define

transformed value and utility functions by




12

t = - o
vit TtV (15)
n
vi = T v.' | (16)
i1 1
o
u, Ty o-ou, (17)
: )
u = Iu' . (18
i=1u:l

By Lemma 2 v' is an additive value function, and by Lemma 4 u' is an
additive utility function. Furthermore if v and u are defined onto
some real interval, so are v' and u'. Therefore, Lemma 1 applies and
there exists a strictly increasing continuous function h with
n . n
z ui'(xi) =h[ ¢ vi'(xi)]. (19)

i=1 i=]1

Let x; = xj° for all j # i. By (15) and (17) vj'(xjo) = 0 and
uj'(xjo ) = 0, thus (19) simplifies to

u;'(x;) = hiv,'(x;)]. (20)

Substituting the right hand side of (20) nto (19) gives

n n
vy ] = LT vy 0], (21)

In particular, let X; = xi° for i = 3,4,...., n. This reduces (21) to




A

hvy'(x))] + hlv,' (x;)] = hlvy ' (x)) + v, ' (x,)]. (22)

(22) is Cauchy's fundamental functional equation h(x) + h(y) = h(x + y)

(see Aczél, 1966), which for continuous h has the non-trivial solution

h(r) = ar. (23)

Substituting (23) into (20) and (19) gives

ui'(xi) = avi'(xi), (24)
n n
Zu'(x;)=at (x ) (25)
1-1ul i 1-1v1
and u' =av', (25)

Resubstituting u and u for u' and v' gives the desired result

u = av + b,
where b = u®-av°. a>0 followé/directly from the fact that h is
strictly increasing.
Theorem 2 Assume that (1+ku) is multiplicative as in (4) and that v

is additive as in (1). Then there exist a>0, b>0 such that
1+ku = b exp {(sgn k) a v} (26)
Proof. The proof is based on a reduction of (8) to the functional
equation h(xy) = h(x) + h(y). Again, consider some arbitrary
x° = (x1°, x2°,..., xi°,..., xh°) and define vi°, v0, u,® and W, v,

and v' as in the proof of Theorem 1. Define the transformed utility

AN
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function u' by
ui' (27)
[ u' (28)

v' is an additive value function (Lemma 2). To establish that u'
is a multiplicative utility function, cbserve that [(1+kui(xi)] >0

for all i = 1,2,..., n and xiexi. For if there was a Yi such that

1+kui(yi) <0, then reversals of preferences must occur or all elements
in X must be indifferent for that value of Y- (See also Fishburn and
Keeney, 1974.) .Neither case is compatible with the additive value
function. Therefore the sign scaling conditions of Lemma 5 are valid,
and u' is a multiplicative utility function. In addition, since v and
u are defined onto some convex subset of Re, so are u' and v'. There-

fore Lemma 1 applies, and there exists a strictly increasing contin-

uous function h such that

n n
izl u, ' (x;) = h{(sgn k) 121 vi'(x)]. (29)

(Note: (29) is the compact form of the two functional equations

u' = h(v') for k>0 and -u' = h[(-v')] for k<0). Evaluating (29) at

K
!
:
N
Yy
5
|
.
,
.I
"
“
»
.
{

xj = xjo for j # i and noting that uj‘(xjo) = 1 and vj'(xjo) =0 re-

duces (29) to

DDA NSNS SN S T S A N



ui' (xl) = h[ (SSD k) Vi' (xl)]' (30)

Substituting the right hand side of (30) into (29) gives
n n
nfh (sgn k) v,'(x;)] = hl(sgn k) I v;'(x;)]. (31)
i=1 i=1

In particular, let X; = xio for i = 3,4,..., n. This reduces (31) to

h(sgn k) v,(x;)] h [(sgn k) v,(x;)] =
h{{(sgn k) v,(x)] + [(sgn k) v,(x;)]}. (32)

(32) is the fundamental functional evaluation h(xy) = h(x + y) (see
Aczel, 1961), which for continuous h has the non-trivial solution
h(r) = exp (a 1). (33)

Since h is strictly increasing, a>0.

Substituting (33) into the original fimctional equations (29) and

(30) gives
u; ' (x;) = expl(sgn k) a v;' (x;)], (34)
n n
and iIgllui'(xi) = exp [(sgn k) a izl vi'(xi)]. (35) R

Resubstituting u, and Vs for ui' and vi' gives the desired results:

5 o
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I, (x;) = (14,%) exp (sgn K) a [v; (x)-v;°1},  (36)

n ) .
z [vi(xi)-vi 14L,(37)

n n
and  Nl+ku, (x;)]= T (1+ku.%)-exp {(sgn k) a
11 1 i=1

i=1 i=1
which, after appropriate definitions of constants becomes

1+ ku=>bexp [(sgn k) a v], b, a>0. (38)

Another way of writing (38) is somewhat more instructive:

u= (sgn k) b' exp {(sgn k) a v} +c. (39)
This form shows that k directly controls the shape of the exponential

transformation. In utility theoretic terms, if k<0 then h is a con-

stantly risk averse transformation, if k>0 it is a constantly risk
seeking transformation. This result was previously shown by Keeney
and Raiffa, 1976, (p.331).
The next theorem reverses the roles of u and v:
Theorem 3 If u is additive as™in (3) and v is multiplicative as in (2),
then there exist a>0, b, such that
u=alnv+hb, (40)
where v>0.
Proof. The proof reduces (9) to the functional equation h(x) + h(y) =

h(xy). Consider some arbitrary x° = (x.°, x,°,...x.°
1 2

i
. o .0 o .0 .
define Vi, Vo, U, U, ui' and u' as in Theorem 1.

)
ces Xy ) and

The transformed value fuimction is defined by
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transformations and v' is a multiplicative value function (Lemma 3).

. i

vy v (41)
v

v = (42)
(o]
v

u' is an additive utility function (Lemma 4). To establish that vi'

and v' exist and represent amultiplicative value function, it suffices
to show that for all i, xiexi, vi(xi)>0. If there was an Yy such that
Vi(yilio’ then reversals of preferences must occur among elements in
X or all elements in X must be indifferent for that value of Y (See
also Fishburn and Keeney, 1974.) Both cases are incompatible with the

additive utility function u. Therefore (41) and (42) are positive

Since both u and v are defined onto some convex subset of Re, so are
u' and v'. Therefore there exist a strictly increasing continuous

function h such that

~

n . n
iilui (x;) = h [izlvi (x;)]. (43)

Evaluating (43) at xj = xjo for j # i and, noting that

uj'(xjo) = 0 and vj(xjo) = 1, (43) can be reduced to

u ' (x;) = h[vi'(xi)]. (44)

Substituting (44) into (43) gives

----------------

........
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T hlv, ()] = B[ 1 ] | i
Thiv.'x.)]=h[ 1 v,"'(x.)]. (45)
i=1 1 7 i=3 * 2 _
| In particular, letting X; = xio for i = 3,4,..., n reduces (45) to '
| .
|
hlv,'(x;)] + hlv,(x,)] = hv,'(x;)v,'(x;)]- (46) )
‘ (46) is the fumnctional equation h(x) + h(y) = h(xy) (see Aczéi, 1966)
; which for continuous h and positive r has the solution a
N
| h(r) =alnr, (47) R
0Y)
where a>0, since h is strictly increasing. P
Substituting (47) into the original functional equations (44) and
(45) gives :
N
uy (xi) = 3 1ln viTxi), (48) i
and N
n n o
[ = [
iflui (xi)-‘ a ln[izlvi(xi)]. (49)
|
} Resubstituting u, and v; for u,' and v,' gives the desired results:
| :
u. = aln—+u,

i v.0 i »
| 1 [ )
‘ !
| and u =aln XE + u°, (51) ;

V ]

which, after appropriate definitions of constants is

u=alnvs+b, (52)
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Theorem 4 If both us and v are multiplicative as in (2) and (4),

then there exist a, b>0 such that
1+ku = (sgn k) (sgn V) blvla (53)

Proof. The proof consists of reducing functional equation (10) to the
fundamental equation h(xy) = h(x)h(y). Although the route will be
similar to the previoﬁs theorems, the situation here is more general
since sign reversals and null region are allowed. Again some

0 0 0 0
X = (x1 s Xy penny X pae

o xno) is picked, but this time zero
mh@ﬁusmﬂbewﬂ&&ieq1&ﬁ&f)#%Vﬁﬁ%#& There
is no problem with excluding zero multipliers, as long as there exist
at least one x and one y in X such that x>y. Because if in one attri-
bute the only realizable value zi° was a zero multiplier, all elements
in X would be indifferent.

(o] (o) 0

o) . . .
Let Vi, Vo, Ui, u be defined as in the previous theorem.

Transformed value and utility functions are defined as follows:

v, = (54)




The above definitions guarantee that all single attribute trans-
formations are positive, thus the sign scaling conditions of Lemmas 3
and 5 are met. Consequently u' and v' are again proper multiplicative
value and utility functions. In addition, since u and v are defined
onto some convex subset of Re, so are u' and v'. Thus Lemma 1 applies

and there exists a strictly increasing continuous function h such that

n

n u.'(xi) = h{(sgn k) 1 vi‘(xi)], (58)
i=1 i=1

(Note: (58) is the compact form of the two functional equations

u' = h(v') for k>0 and -u' = h(-v') for k<0.) Evaluating (58) at
x. = x.° for j # i, and noting that uj'(xjo) = vj'(xjo) = 1 reduces

J J
(58) to

u; ' (x;) = h{(sgn k) v, ' (x;)]. (59)

PIETRURIN. "R PP LRI W WA WIS L

.
Sy Ca_t_S_ A _F_"_0.




21
Substituting the right hand side of (59) into (58) yields

n n
'nl h{(sgn k) vi'(xi)] = h[(sgn k) 'nl vi'(xi)]. (60)
i= i=

In particular, let x; = xi° for i=3,4,..., n. This reduces (60) to

h{(sgn k) v,(x )] h(sgn k) v,(x))] =
B {[(sgn k) v;(x;)][(sgn K)v,(x,)]}. (61)

(62) is the fundamental functional equation h(x)h(y) = h(xy) (see Aczel,

1966) which, for continuous h has the nontrivial solution

h(r) = (sgn 1) |r|2. (62)

Since h must be strictly increasing a > 0. (See Aczel, 1966.)

Substituting (62) into the original functional equations (58) and

(59) gives:
u; " (%) = (sgn K)[sen vy ' (x;)1]vy'xp) | (63)
n n n a
and 121 u, ' (x;) = (sgn k)[sgn 121 vi'(xi)]liﬁl vt (x) 1T (64)

Resubstituting u, and vy for ui' and vi’ gives the desired results:

1 l ]

V.
+ku, = (1+ku,%) (sgn k) (sgn =) |v.°17% |v. [® (65)
1 V‘O 1

1
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n n o n Vi n 0,-a n a
M l+ku, = 1 (1+ku,")(sgn K)(sgn 1 —=3)| n v, | | m v |, (66)
j=1 j=1 1 i=l v;° il i=1

which, after appropriate definitions of signs and constant terms gives
1+ku = (sgn k) (sgn v) b |v|? (67)
where b, a > 0.

Scaling Procedures and Examples

The solutions of the functional equations presented in Theorems
1-4 are unique up to the specification of two parameters. By Lemmas
2-5, however, we can transform value and utility functions using two
free parameters. Thus it is possible to use standardization conven-
tions in the con.stmction of u and v such that both functions go through
two arbitrary fixed points. Such conventions will '‘consume' the two
free parameters in the functional equations and produce special forms
of functional equations which/ do not depex_1d any more on a and b.

For the case in which both u and v are additive this is possible

1 ¢ X such that x1 - xo, and by defining

by choosing elements x°, X
ux®) = v(x®) = 0 and utx!) = v(x!) = 1. Solving for a and b in the

solution (14) of Theorem 1 gives the results a = 1 and b = 0; therefore

u=v. (68)

In other words, if u and v are standardized a priori to assume values

zero and one at identical points in X, they must be identical evervwhere.

- - -~ -
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)
*
S
)
>




F‘-_mmmmmmﬂwm\mﬂ WEITW IVW UMWV e
0

23
Using the same standardizations in the case where u is multi-
plicative and v is additive gives the solutions b = 1 and
a = (sgn k) In(1+k). Substituting a and b in the solution (26) of

Theorem 2 gives
+ku = (1+k)V. (69)

Figure 1 gives examples of such functions, which only depend on the
"interaction'' parameter k in the multiplicative model. In the liter-
ature k typically is found to lie somewhere between -.95 and -.1 (see
Keeney and Raiffa, 1976). For such negative values h is concave,
which is interpreted as risk aversion in value. For k + -1 the risk
aversion increases, i.e., the function becomes more concave. For

k = 0 the function approaches u = v, which corresponds to the reéult
that for k - 0 u goes over into the additive model. For k > 0 the

function h becomes convex with increasing convexity (risk proneness)

as k gets larger.
/

The range between 0 and 1 is of particular interest for ana-
lyzing the curvature of h, since typically both u and v would be
standardized by selecting x° as the worst alternative and xl as the
best. Figure 2 shows a blowup of Figure 1 in the local range between
0 and 1. For k values between -.5 and +1 the functional relationship
between u and v is almost linear, but for k = -.99 concavity
(risk aversion) is substantial, and for k = 5C convexity (risk proneness)

is significant.
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Insert Figures1l and 2 about here

In the case where u is additive and v is multiplicative the

above standardization conventions camnot be used since v > 0 everywhere.

However, applying the same conventions to u and defining vix®) =1
and v(xl) = e gives the convenient solutions a = 1 and b = 0. Using

these values in (52), the solution of Theorem 3 gives

u=1lnv, (70)
When both u and v are miltiplicative, standardizations are con-
strained by the fact that (l+ku) and v must obtain zero values at iden-
tical points. This fixes a point of u as a function of v and makes it
necessary to standardize separately for the cases where k is positive
and where k is negative. If k is positive, the following conventions

will be used: u(xo) = 0, v(&o) =1, u(xl) =1, v(xl) = e, These are

the same conventions used above, but there is an additional restriction:

x° must not be a natural zero point (i.e., a zero multiplier), and for

any zero multiplier z°, xl

~ x° = 2°. These conventions give solutions
b=1and a = In(1+k). Consequently the solution (67) of Theorem 4 re-

duces to

1+ku = (sgn v)[vlln(1+k), k > 0. (71)

.
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FIGURE 1

GLOBAL PROPERTIES OF FUNCTIONS RELATING u AND vIFu IS
MULTIPLICATIVE AND v IS ADDITIVE (Standardization conventions as in text).

(1+ku) = (1+k)Y
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FIGURE 2 2

LOCAL PROPERTIES OF FUNCTION RELATING u AND Vv IF u IS
MULTIPLICATIVE and v IS ADDITIVE (Standardization conventions as in text)

(1+ku) = (1+k)Y

74+
6
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Figure 3 gives examples of this functional relationship which
again only depends on k. v = 0 is in an inflection point for all k,
and the positive and negative sides are mirror images up to a multi-

plicative transformation. This fact follows from the character of

Ll ol G g

negative multipliers which should maintain the essential properties
of the utility function in its negative and positive part. k=e -1 A
gives the linear relationship. For larger k h is concave in negative
values of v and convex in positive ones. For smaller k this trend re-
verses. A final observation is the natural limit of the concavity of N
h when k tends towards zero. The dotted line represents this limit,

which is in fact the function u = In v, as would be predicted since u
becomes additive if k goes to zero. f

Insert Figure 3 about here

Figure 4 gives again the blowup for the standard range of u between 0

and 1. Here it appears that k values between 1 and 5 tend to produce
/
close to linear functions.

Insert Figure 4 about here {

When k is negative the foilowing standardization conventions will
be used: u(x®) = 0, v(x°) = -1; u(xl) = -1, v(xl) = -¢. These are
similar to the conventions for positive k, but applied to the negative

ranges of u and v. Here the additional assumption must be made that x°
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FIGURE 3

GLOBAL PROPERTIES OF FUNCTIONS RELATING u AND v IS BOTH ARE
MULTIPLICATIVE (Standardization conventions for k > 0 as in text)

u
14+ ku = (sgn v)Ivi M1+ *

k=0, u=Inv
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FIGURE 4

LOCAL PROPERTIES OF FUNCTIONS RELATING u AND v IF BOTH ARE
MULTIPLICATIVE (Standardization conventions for k > 0 as in text)

1+ ku = (sgn v) Iv| In(1+k)
u
k=»=0,u=In v
A
A
]
\
R sS4
|
‘ -
T k=50
1
k=§
i
k=e—1 ,
—5 !
<
k=1 :3{
|
k==0 !
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is not a zero multiplier, and that for any zero multiplier z2°
2%~ X0~ xl. Using these standardization conventions, the solutions
for aand bareb=1and a = 1In (1-k). Substituting these solutions
into (53), the solution to Theorem 5 gives

1+¢ku = -(sgn v) IVllnu-k) , k<0

(72)

Figures 5 and 6 present examples of this functional relationship
both for the global range of u and v and the local range within the
standardized values. v = o is again an inflection point, and the
positive and negative segments are mirror images up to a multiplicative
transformation. In this case, however, h is convex (risk seeking) in
the negative values of k and concave (risk prone) in the positive values.
The local mn'vann'e of h within the standardized range is close to

linear for most of the range of negative k's.

Insert Figures 5 and 6 about here

Behavioral and Applied Implications

Behavioral implications. To explore the behavioral meaning of the

mathematical results it is helpful to consider a simple commodity bum-

dle evaluation example. Let each Xi denote a commodity with unit price

N L

p;. Xx= (xl, Xgpenes Xipunes xn) is a commodity bundle with amounts

X;. The market price for such a bundle would be
"

K |

=

n i

p(x) = iz-l P;X; - (73) -

2

b}
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FIGURE §

GLOBAL PROPERTIES OF FUNCTIONS RELATING u AND v IF BOTH ARE
MULTIPLICATIVE (Standardization conventions for k < 0 as in text)

t+ku = —(sgn v) fvi "0 K 4
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FIGURE 6

LOCAL PROPERTIES OF FUNCTIONS RELATING u AND v IF BOTH ARE
MULTIPLICATIVE (Standardization conventions for k>0 as in text)
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(73) is also a simple additive value model in which preferences for
(riskless) commodity bundles are dictated by their respective prices.
The implications of linear value functions Vi = PiXg and linear in-
difference curves are obvious.

Assuming that an analyst only knows that (73) is an appropri-
ate conjoint measurement value representation for some decision maker
and that the v. Neumann and Morgenstern utility function u is additive,

theorem 1 implies the strong results:

n .

u(x) = & pix;, (74)
i=1

ui(xi) = P;X;- (75)

That, of course, means that the decision maker is risk neutral.

To extend this line of argument to nonlinear value functions,
assume that all v,'s are marginally decreasing as described by a
logarithmic function

vi(xi) = 1n X3 (76)
and that v is additive. Assuming again that u is additive implies

u; = In x.. (77

The single attribute utility functions in (77) appear risk averse, but

risk aversion in this particular context means nothing more than marginally
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decreasing value. There is absolutely no element of the colloquial
notion of "avoiding to take chances' implied by the shape of the
ui's. On the contrary, I would consider a decision maker whose pre-
ferences follow (76) and (77) risk neutral in value.

This risk neutrality in value comes, in fact, as no surprise
considering the structural assumption behind the additivity of u.
This assumption, called the marginality assumption (Fishburn, 1965),
requires the decision maker to be indifferent among all gambles with
identical single attribute (marginal) probability distributions. To

illustrate, consider the following two gambles for commodity bundles:

GAMBLE 1 GAMBLE 2
HEADS  TAILS HEADS  TAILS

GASOLINE 166G 0 0 16 G

GROUND BEEF 10 P 0 0P 0

According to the marginality assmtioﬂ these two gambles should be
indifferent. But an experimental study (v. Winterfeldt , 1979) revealed
that subjects generally prefer the right option, because it has more
balanced outcomes. Similar results were obtained by Delbeke and Fauville
(1974) and in applied studies (Keeney and Raiffa, 1976). This is, of
course, a form of risk aversion but to distinguish it from the usual
single attribute risk aversion it has been called multiattribute risk
aversion (see also Richard, 1975). The marginality assumption is there-
fore equivalent to multiattribute risk neutrality, and single attribute

risk neutrality in value. It does not, however, require linear utility
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functions as example (77) shows.

Disentangling risk attitude from marginal value considerations be-
n
comes more interesting if we consider the riskless model v(x) = I ln x

i=1
in connection with a multiplicative utility function. The standard-

i

ized form of Theorem 2 implies
n

, s
l1+ku(x) = (1+k) i=1 zln X; . (78)

Setting all x:j = xjo except for some i gives

T+, (x;) = (41 %4, (79)
Now assume further than k = e-1, which yields

I S
b Sl - S ol (80)

which is a linear utility function. This example shows that it is
theoretically possible to have linear utility functions, not because
the decision mﬁker is risk neutral, but because his risk proneness
compensates his marginal decreasing value function. The example also
shows that the marginality tests could conceivably be violated in
spite of linear utility functions. Or, in other words, a decision
maker may be multivariate risk averse (prone) in spite of single
attribute risk neutrality. Of course, this single attribute risk
neutrality would only be an appearance when u is multiplicative and

v is additive, since it may be based on strong risk aversion or prone-

ness in value.
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Multiattribute risk aversion and proneness can be related to the
interaction parameter k in the multiplicative model (see Keeney and
Raiffa, 1976). If k < 0, the decision maker must be multiattribute risk
averse, i.e., he would prefer the more balanced gamble in the margin-
ality test. If k > 0, the decision maker must be multiattribute risk
prone, i.e., he would prefer the more imbalanced gamble in the margin-
ality test.

Theorems 3 and 4 do not contribute substantively to the behavior-
al understanding of riskless and risky evaluation phenamena. The case
where u is additive and v is multiplicative (in the non-genuine sense
of having no null zemes or sign reversals) appears to be very rare. In
fact, from a strictly measurement theoretic point of view it camnot hap-
pen at all, since additivity of u implies the existence of an additive
v. In the conjoint measurement sense a multiplicative v without null
zones or sign reversals is indistinguishable from an additive v. To main-
tain that v is multiplicative in such a case requires a priori reasoning
which lies outside the arguments of conjoint measurement theory. For
example, in evaluating cars, the attributes safety and performance may
be considered multiplicative factors a priori, even if there are not
preference reversals or null multipliers in the attribute ranges under
consideration. Such multiplicative versions of a theoretically additive
conjoint measurement model may be preferable for face validity reasons.
Consider the case of a non-genuine multiplicative v where all vi's are

exponential in the form vy (xi) = exi, and where u is additive. By

Theorem 3
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u=lnx= ;:1 X;. (81)
i=1
(81) demonstrates again the possibility of a linear utility function
with curvilinear value functions.

Genuinely multiplicative value and utility functions are very
rare and if they occur they are striking phenomena as Krantz et al
note (Krantz et al, 1971). The behavioral interpretations for func-
tional relationships between u and v in this case are less clear than
in the previous cases. Assume that v is multiplicative in the form

n
v(x) = I x,. (82)
i=]1
If u is also multiplicative, the standardized solutions of Theorem
4 implies |

u () = (sgn K) § (sgn xp) |x;|IP0L* (g IOk (g

which is ﬁsk neutral if k = e - 1, risk prone in positive X4 if

k > e-1 and risk averse in positive X; if k < e-1. The negative x;'s
have the opposite risk attitude when compared with the positive xi's.
Applied implications. The main applied argument for using Theorems

1-4 is that v can be constructed with ‘simpler methods than u. u can
be obtained from v on the basis of a priori reasoning about the ag-

gregation form of u and v, and on the basis of a few risky questions

to assess k.
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Why is v easier to construct than u? In (conjoint measurement)
theory a special sequence of indifference judgments is required to
construct v. This procedure is called ''dual standard sequence' or
"lock step procedure'" (see Krantz, et al, 1971 and Keeney and Raiffa,
1976). This procedure is not substantially simpler than the lottery
methods required to comstruct ui But simple rating and weighting
techniques, notably Edwards' SMART procedure (1977), can approximate
dual standard sequences, since this involves similar cognitive pro-
cesses. It would be much more difficult to justify a SMART approxi-
mation of u, since risk attitude and cognitive processes particular to

lottery methods are involved in the direct assessment of u.

Assuming that SMART or some similar methods are fai;‘ or good
approximations of v, Theorems 1-4 provide a simple basis of transform-
ing v into u and of crosschecking the construction.of value and util-
ity functions. If the considerations of Theorem 1 apply, SMART can
be used directly to take expectations, since u = v. If the conditions

of Theorem 2 are met, the analyst has to assess the interaction

parameter k in addition to v. Often this can be done by a priori
reasoning about multiattribute risk attitude (to determine the sign of
k) and by a few exploratory questions about the degree of multivariate
risk attitude (to determine the size of k). Sometimes translating v
into u may not even be worth the effort, e.g., if k is between -.5 and
+1. Figures 1 and 2 show that in such cases the exponential transform-
ations are almost linear, and expected utilities would be very difficult

to distinguish from expected values taken over v.
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Similar methods can be applied in the cases where the conditions
of Theorems 3 and 4 are met. In all cases it would be good practice
to construct both u and v and cross check their implications, when the
transformation of v is assessed.

This last argument leads up to a development of methods for per-
forming sensitivity analyses, based on Theorems 1-4. In particular,
these theorems give some simple deterministic bounds for modelling
errors, i.e., from using an additive SMART type model when the true
model is multiplicative. By now, the steps to perform such sensitivity
analysis should be obvious. Further experimental and numerical studies
of the functional forms in the four theorems may prove useful for
applications of decision analysis.
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